3.85 \(\int (a+a \cos (c+d x))^{3/2} (A+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=132 \[ \frac {8 a^2 (35 A+19 C) \sin (c+d x)}{105 d \sqrt {a \cos (c+d x)+a}}+\frac {2 a (35 A+19 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{105 d}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{7 a d}-\frac {4 C \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{35 d} \]

[Out]

-4/35*C*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*C*(a+a*cos(d*x+c))^(5/2)*sin(d*x+c)/a/d+8/105*a^2*(35*A+19*C)*
sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/105*a*(35*A+19*C)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {3024, 2751, 2647, 2646} \[ \frac {8 a^2 (35 A+19 C) \sin (c+d x)}{105 d \sqrt {a \cos (c+d x)+a}}+\frac {2 a (35 A+19 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{105 d}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{7 a d}-\frac {4 C \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{35 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2),x]

[Out]

(8*a^2*(35*A + 19*C)*Sin[c + d*x])/(105*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*(35*A + 19*C)*Sqrt[a + a*Cos[c + d*
x]]*Sin[c + d*x])/(105*d) - (4*C*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(35*d) + (2*C*(a + a*Cos[c + d*x])^(
5/2)*Sin[c + d*x])/(7*a*d)

Rule 2646

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(-2*b*Cos[c + d*x])/(d*Sqrt[a + b*Sin[c + d*
x]]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2647

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n -
1))/(d*n), x] + Dist[(a*(2*n - 1))/n, Int[(a + b*Sin[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && Eq
Q[a^2 - b^2, 0] && IGtQ[n - 1/2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 3024

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp
[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x]
)^m*Simp[A*b*(m + 2) + b*C*(m + 1) - a*C*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] &&  !LtQ[
m, -1]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx &=\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 a d}+\frac {2 \int (a+a \cos (c+d x))^{3/2} \left (\frac {1}{2} a (7 A+5 C)-a C \cos (c+d x)\right ) \, dx}{7 a}\\ &=-\frac {4 C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 a d}+\frac {1}{35} (35 A+19 C) \int (a+a \cos (c+d x))^{3/2} \, dx\\ &=\frac {2 a (35 A+19 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{105 d}-\frac {4 C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 a d}+\frac {1}{105} (4 a (35 A+19 C)) \int \sqrt {a+a \cos (c+d x)} \, dx\\ &=\frac {8 a^2 (35 A+19 C) \sin (c+d x)}{105 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a (35 A+19 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{105 d}-\frac {4 C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 75, normalized size = 0.57 \[ \frac {a \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} ((140 A+253 C) \cos (c+d x)+700 A+78 C \cos (2 (c+d x))+15 C \cos (3 (c+d x))+494 C)}{210 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*(700*A + 494*C + (140*A + 253*C)*Cos[c + d*x] + 78*C*Cos[2*(c + d*x)] + 15*C*Cos
[3*(c + d*x)])*Tan[(c + d*x)/2])/(210*d)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 81, normalized size = 0.61 \[ \frac {2 \, {\left (15 \, C a \cos \left (d x + c\right )^{3} + 39 \, C a \cos \left (d x + c\right )^{2} + {\left (35 \, A + 52 \, C\right )} a \cos \left (d x + c\right ) + {\left (175 \, A + 104 \, C\right )} a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

2/105*(15*C*a*cos(d*x + c)^3 + 39*C*a*cos(d*x + c)^2 + (35*A + 52*C)*a*cos(d*x + c) + (175*A + 104*C)*a)*sqrt(
a*cos(d*x + c) + a)*sin(d*x + c)/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [A]  time = 0.41, size = 189, normalized size = 1.43 \[ \frac {1}{420} \, \sqrt {2} {\left (\frac {15 \, C a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )}{d} + \frac {63 \, C a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )}{d} + \frac {35 \, {\left (4 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 5 \, C a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )}{d} + \frac {105 \, {\left (4 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 3 \, C a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{d} + \frac {420 \, {\left (2 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + C a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{d}\right )} \sqrt {a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

1/420*sqrt(2)*(15*C*a*sgn(cos(1/2*d*x + 1/2*c))*sin(7/2*d*x + 7/2*c)/d + 63*C*a*sgn(cos(1/2*d*x + 1/2*c))*sin(
5/2*d*x + 5/2*c)/d + 35*(4*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 5*C*a*sgn(cos(1/2*d*x + 1/2*c)))*sin(3/2*d*x + 3/2*
c)/d + 105*(4*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 3*C*a*sgn(cos(1/2*d*x + 1/2*c)))*sin(1/2*d*x + 1/2*c)/d + 420*(2
*A*a*sgn(cos(1/2*d*x + 1/2*c)) + C*a*sgn(cos(1/2*d*x + 1/2*c)))*sin(1/2*d*x + 1/2*c)/d)*sqrt(a)

________________________________________________________________________________________

maple [A]  time = 0.55, size = 108, normalized size = 0.82 \[ \frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (60 C \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 C \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+35 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+19 C \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+70 A +38 C \right ) \sqrt {2}}{105 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2),x)

[Out]

4/105*cos(1/2*d*x+1/2*c)*a^2*sin(1/2*d*x+1/2*c)*(60*C*cos(1/2*d*x+1/2*c)^6-12*C*cos(1/2*d*x+1/2*c)^4+35*A*cos(
1/2*d*x+1/2*c)^2+19*C*cos(1/2*d*x+1/2*c)^2+70*A+38*C)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [A]  time = 0.80, size = 108, normalized size = 0.82 \[ \frac {140 \, {\left (\sqrt {2} a \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 9 \, \sqrt {2} a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} A \sqrt {a} + {\left (15 \, \sqrt {2} a \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 63 \, \sqrt {2} a \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 175 \, \sqrt {2} a \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 735 \, \sqrt {2} a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} C \sqrt {a}}{420 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

1/420*(140*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*A*sqrt(a) + (15*sqrt(2)*a*sin(7
/2*d*x + 7/2*c) + 63*sqrt(2)*a*sin(5/2*d*x + 5/2*c) + 175*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 735*sqrt(2)*a*sin(1
/2*d*x + 1/2*c))*C*sqrt(a))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2),x)

[Out]

int((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+C*cos(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________